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ABSTRACT
Modern Machine Learning (ML) models employ sparsity to mitigate
storage and computation costs; but it gives rise to irregular and
unstructured sparse matrix operations that dominate the execution
time and require specialized accelerators to meet the performance
and energy targets. Contemporary sparse matrix accelerators, opti-
mized for extreme sparsity, frequently fall short in addressing the
variable and moderate degrees of sparsity prevalent in most ML
models. Variable sparsity leads to inefficiency in the storage and
processing of matrices. In response to this challenge, we propose an
adaptive and generalized architecture design,ZeD, capable of accom-
modating the variably sparse matrix computations in ML models.
Our innovative design integrates a bit-tree compression format
and zero-detection hardware, resulting in highly efficient packing,
storage, retrieval, and processing of sparse matrices. Furthermore,
we propose a matrix row reorganization strategy based on sparsity
similarity to substantially enhance memory reuse. Synthesis results
of ZeD demonstrate a 3.2× improvement in performance per area
over state-of-the-art solutions across a spectrum of ML workloads
characterized by wide-ranging sparsities.
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1 INTRODUCTION
The escalating demands for storage and computing resources in ma-
chine learning (ML) have outpaced the development of specialized
accelerator architectures tailored to address these challenges. A
substantial portion of the computational workload in ML models is
attributed to convolutions in convolutional neural networks (CNN)
and attention mechanisms in models such as Transformers (e.g., Vi-
sion Transformers (ViT) and Natural Language Processing models
like GPT). These operations fundamentally rely on matrix multipli-
cations [17, 20, 24]. A widely adopted strategy to mitigate computa-
tion, communication, and storage needs for matrix multiplications
is to employ sparsification and quantization techniques [3, 9].

Sparsification in model weights is achieved through pruning,
which reduces the model size by trimming redundant weights
and activations while trying to retain accuracy. Sparsity in acti-
vations often arises due to zero-valued results from non-linear
functions like the rectified linear unit (ReLU). Inherently, this spar-
sification is unstructured, creating random sparsity patterns and
hence introducing irregularity in memory access and processing,
leading to inefficient inference performance. To make the model
more hardware-friendly, prior works have attempted to resort to
structured sparsity [3, 23, 26]. This requires sparsification under
hardware-aware constraints where pre-defined structures that can
arguably benefit from data locality are incorporated into the prun-
ing mechanism. Unfortunately, these constraints reduce freedom
on the software side, where ML research and new ML models are
constrained within hardware-defined boundaries, which exposes
accuracy-compression trade-offs. In fact, recent Transformer works
show that, when pruning with a similar accuracy target, unstruc-
tured sparsity achieves 90% compression while structured sparsity
reaches only 70% compression [20]. Moreover, enforcing such struc-
ture on dynamically generated sparse matrices like activations or
attention masks is often not feasible. It is imperative to study un-
structured sparsity despite its irregularity.

Contemporary sparse matrix accelerators are often optimized
for hyper sparsity (> 99.9% sparsity); consequently, they frequently
fall short of addressing the variable and relatively lower degrees of
sparsity prevalent in most ML models. Figure 1 shows the current
landscape of sparse matrix workloads, where ML workloads lie in
the moderate sparsity regions, while scientific computing matrices
belong to the extreme case of hyper-sparse matrices. We observe
the variation in the degrees of sparsity across various matrices
from ML and popular scientific workloads, This includes scientific
matrices from SuiteSparse[7, 42]; sparse BERT and DeiT models[22,
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Figure 1: Variation in sparsity

41] representing NLP and ViT applications; and different layers of
ResNet50 [12] for CNNs. Clearly, sparse matrices from scientific
computing are hyper-sparse (> 99.9% sparsity), whereas matrices
from ML workloads are only moderately sparse (≤ 90% sparsity),
with a large variation in sparsity between different models and even
within one model. This unstructured sparsity of variable degrees in
ML is challenging from both storage and computation perspectives.

Storage Challenge. Traditional sparse matrix accelerators, tai-
lored for hyper-sparse matrices, often utilize coordinate-based for-
mats such as Compressed Sparse Row (CSR) and Coordinate Lists
(COO) [15, 27, 37, 42]. These formats encode the positions of each
non-zero element using elaborate metadata, allowing the accel-
erator to access the non-zero elements with minimal additional
hardware. While these formats excel with hyper-sparse matrices
containing only a few non-zeros, the associated metadata over-
head becomes significant as the density of the matrices increases,
incurring substantial storage and memory traffic overhead.

Further, in the inference of ML models, sparsification is often
coupled with quantization, which compresses numerical values by
reducing their bit-width without substantial loss in accuracy. In
the context of quantized sparse models, where the actual data size
undergoes significant reduction (e.g., 4-bit precision), the high over-
head imposed by metadata from sparsification becomes dominant.
This is because while quantization reduces the cost of storing the
numerical values of the data elements, the metadata overhead re-
mains constant, amplifying the relative inefficiency of these formats.

Figure 2 compares the overall storage costs of different layers of
a sparse ML model ResNet50, encoded with various sparse matrix
formats normalized against the uncompressed dense matrix at 8-bit
and 4-bit precisions. The variation in storage costs among these
formats is influenced by the meta-data overhead, which depends on
the degree of sparsity. The CSR and COO formats tend to exhibit
considerably high overhead. Interestingly and counterintuitively,
the compressed models in CSR/COO formats are sometimes even
less efficient than just using the dense format with all the zeros in-
cluded. CSR/COOmetadata can bloat the storage requirement by up
to 2-3X in such cases compared to the simple, dense format. As the
trend towards quantized model inference gains momentum, where
the ML models move towards extremely low precisions [2, 25], the
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Figure 2: Comparison of storage costs of various sparse for-
mats, normalized to the dense format (uncompressed) for
8-bit and 4-bit precisions.
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Figure 3: Types of sparse metadata: Coordinate-based (for
CSR, COO), and Bit-sparse (for Bitmap, Bit-tree)

impact of this overhead becomes more pronounced, exacerbating
the inefficiencies of CSR and COO formats. On the other hand,
these coordinate-based sparse formats relieve the hardware from
needing any costly additional indexing circuitry, work well with
state-of-the-art sparse dataflows, and are thus widely used. How-
ever, the inadequacies of these coordinate-based formats underscore
the pressing need to explore sparse representation techniques that
incur minimal overhead across a broader range of sparsity while
effectively handling irregularities for efficient processing by the
hardware accelerator.

The bitmap format uses one bit per element to indicate whether
the element is zero, making its storage complexity dependent solely
on the size of the input matrices rather than their sparsity, which
allows for better compression in moderately sparse matrices. We
adopt a hierarchical bit-tree storage format to extend this to a
wider range of sparsity while maintaining low storage costs and
enabling streamlined processing. Figure 3 illustrates the bit-tree
format, which can be deemed as a lossless compression of the
bitmap format, with its origins in Huffman trees [35]. The bit-tree
hierarchically encodes the zeros in a bitmap, allowing the runtime
skipping of sequences (packs) of zeros systematically. Bit-sparse
formats like Bitmaps and Bit-Trees maintain a consistently low
storage overhead, as shown in Figure 2, as their metadata size
primarily depends on the matrix size and not the degree of sparsity.



Work Type Efficiency Sparsity Level Application
[3, 23, 26] Structured High Low CNN
[8, 24] Structured High Low Sparse Attention
[29, 33, 42] Unstructured High Hyper-sparse Scientific Computing
[15, 17, 27] Unstructured Low High CNN
[14, 22, 27] Unstructured Low High Sparse Attention
ZeD (Ours) Unstructured High Low to High CNN, Sparse Attention

Table 1: Categorization of Sparse Accelerators

Computational Challenge. Table 1 categorizes prior accelera-
tors based on the application domain and the achieved or expected
sparsity level to maintain optimal accuracy and efficiency. In this
context, efficiency serves as a qualitative proxy for the achieved
performance relative to the area, power, and memory bandwidth.
Contemporary ML accelerators predominantly adopt structured
sparsity [1, 3, 8, 23, 26] to achieve significant hardware efficiency,
although this leads to limited and lower compression achieved for
the same accuracy.

One of the basic building blocks of existing sparse matrix com-
putations involves indexing into non-zero elements of operands
by comparing their indices (i.e. metadata) [16, 21] and frequent
random access of the sparse vectors (matrix rows). Sparse tensor
algebra accelerators for scientific computing [4, 10, 29, 33, 42] using
CSR/COO formats demonstrate high efficiency even for unstruc-
tured data due to novel dataflows, compression formats, and mem-
ory access techniques. However, they are tailored to matrices within
the hyper-sparse domain. When targeting moderate to low unstruc-
tured sparsity like what is seen in ML workloads [14, 15, 17, 22, 27],
they do not exhibit the same level of efficacy due to high overhead
for metadata access. The growing number of non-zero elements
per row increases random access and escalates metadata indexing
and comparisons per essential compute operation, directly affecting
performance and efficiency. This demonstrates that employing tech-
niques tailored for extreme cases to address broader problems re-
sults in unforeseen inefficiencies. Due to the variability of machine
learning workloads, it is crucial to develop efficient and general
methods for retrieving and processing the non-zeros.

While bit-sparse formats like bitmaps and bit-trees offer efficient
storage alternatives, they are challenging from an accelerator de-
sign perspective. Conventional bitmaps require dynamic decoding
of arbitrarily long binary vectors to access non-zero elements, in-
troducing complexity, reducing scalability, and hindering hardware
acceleration. As mentioned earlier, prior works use the CSR or COO
formats for this reason. We overcome this issue by adopting the bit-
tree format that allows us to skip consecutive zeros systematically
during processing. More importantly, we achieve this with minimal
hardware overhead by carefully designing the packing strategy
of bit-trees, circumventing the hardware complexities normally
associated with bitmap access. Furthermore, we analyze the mem-
ory access patterns of the matrices to reorganize their execution
and substantially enhance memory reuse, thereby alleviating the
memory bottlenecks inherent to sparse dataflows.

Contribution: We present ZeD1, a generalized architecture de-
signed to accelerate variably sparse and unstructured machine
learning workloads. Our contributions include the following:
1for Efficient, General Zero Detection

• We mitigate storage and memory traffic overheads by adopt-
ing highly efficient bit-tree structures for packing the sparse
metadata of the compressed matrix.
• We design a low overhead, multi-pass, parallel zero skipping
mechanism to retrieve and process non-zeros from bit-trees.
• We study the parallelism of the dataflow and memory-access
patterns in the sparse matrices to propose a pre-processing
mechanism that reorganizes and groups execution of input
rows to maximize memory reuse.

Overall, ZeD proposes a general and efficient architecture that har-
nesses wide-ranging sparsity within unstructured data to achieve
3.2× better performance/area than prior state-of-the-art accelera-
tors and a 3.4× reduction in memory traffic.

2 STORAGE FORMAT & DATAFLOW
In this section, we first discuss various sparse storage formats and
then introduce the hierarchical bit-tree storage format. Following
this, we present our optimized algorithm, which utilizes a dataflow
designed to exploit bit-tree sparsity and accommodate variable un-
structured sparsity in matrices. Our approach includes an output-
stationary, tiled, row-wise product matrix multiplication dataflow
tailored to the bit-tree storage format. Finally, we propose an of-
fline row access reorganization and grouping strategy to alleviate
memory traffic bottlenecks associated with the dataflow.

2.1 Hierarchical Bit-Tree Storage Format
Figure 5 presents the trend of the storage costs of the dense and
commonly used sparse formats [10, 15, 17, 27, 32, 38] for a𝑀 × 𝑁
matrix with varying density. Coordinate-based formats (CSR and
COO) use meta-data, typically an entire list or pointers to store the
coordinates of each non-zero element. The coordinate is used to
index non-zero elements during matrix multiplication to effectively
compute only the non-zero products. The size of the largest matri-
ces in the target application domain determines the number of bits
allocated for this coordinate encoding. This can lead to significant,
unexpected overhead for the variable sparsity levels commonly
encountered in ML workloads, sometimes even exceeding the stor-
age cost of the dense format (Figure 2). In contrast, bit-sparse
formats like Bitmaps employ a simple binary encoding for non-zero
elements, resulting in a consistent storage overhead regardless of
sparsity level. This makes them highly suitable for a wide range of
sparse matrices from a compressed storage perspective. However,
conventional bitmaps require dynamic decoding of arbitrarily long
binary vectors to access non-zero elements, introducing complexity,
reducing scalability, and hindering hardware acceleration.

Efforts have been directed towards utilizing coarse-grained point-
ers and bitmaps [16, 19, 38], which involve compressing and skip-
ping larger, entirely zero tiles within the matrix. This hierarchical
organization aims to eliminate completely zero tiles during ma-
trix operations on conventional dataflow architectures. However,
this approach struggles to tackle sparsity effectively. It necessitates
storing and computing all zeroes within a block that contains at
least one non-zero element, resulting in performance and efficiency
degradation. This drawback becomes particularly apparent in mod-
erately sparse matrices where nearly every block may contain at
least one non-zero element. Skipping at a coarser granularity needs
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to be combinedwith compression and skipping at a finer granularity
to avoid any zero-valued storage and computations.

We adopt a hierarchical bit-tree format that encodes sequences
of consecutive zeros as a single zero at a higher level, similar to
hierarchical Run-Length Encoding used in Huffman trees [35], to
address the challenges associated with variable sparsity. Bit-trees
evolve from bitmaps by encoding packs of consecutive zeros in the
bitmap as a single zero at a higher level. Figure 5 illustrates that the
bit-tree offers the most compact memory footprint across varying
densities, except in the cases of hypersparse and dense matrices.

Bit-trees can be designed with an arbitrary number of levels,
recursively condensing sequences of multiple zeros into a single
zero. Based on experimental evaluation, we encode/pack a sequence
of four zeros as a single zero. The greater the number of levels,
the more efficient the encoding for matrices with higher sparsity.
For the purpose of this discussion, focusing on moderate sparsity,
we use a two-level bit-tree with the levels denoted as l1 and l2,
illustrated in Figure 4(a). In this representation, a group of four
consecutive elements at l2 is referred to as a "leaf", and a non-zero
leaf exhibits one-to-one mapping with its corresponding actual
values in the uncompressed matrix. The compressed values stored
inmemory do not consist of any zeroes with the exception of a small
amount of zeroes required for padding at the end of a tile’s storage
to maintain memory alignment. Decoding operates inversely; each
non-zero element in l1 corresponds to a leaf in l2 with one or
more non-zero values, while every zero in l1 corresponds to four
consecutive zeros in l2 that do not need to be stored or computed.
We present a sensitivity analysis of the storage format parameters
in the experimental evaluations.

Given the binary nature, the storage cost of bit-tree is similar to
a naïve bitmap for moderate sparsities. In fact, it is better at higher

sparsities and is significantly more amenable to hardware decoding.
To the best of our knowledge, ours is the first work to introduce
bit-trees for accelerating sparse matrix multiplication. Capstan [32]
employs bit-trees for vectorizing addition on non-zeroes clustered
along the diagonal in hyper-sparse matrices. However, their ap-
proach calculates addresses explicitly by nesting iterations over
multiple levels for these extremely sparse matrices, which becomes
inefficient at medium sparsity levels. In contrast, we use the knowl-
edge of the relative positioning of non-zeroes in the tree and exploit
data locality within bit-trees through our dataflow. We introduce
low-cost architectural support to efficiently retrieve the required
data at different levels during matrix multiplication. More specifi-
cally, we use simple, myopic zero-detection hardware that employs
multiple passes on four-bit sequences to find the non-zeroes’ rel-
ative positions at each level of the tree. These relative positions
help us dynamically map the non-zero values to their desired com-
pute positions. This localized zero-detection facilitates parallel and
efficient sparse vector operations in our dataflow, ensuring perfor-
mance efficiency and scalability.

2.2 Dataflow and Memory Access
We customize the dataflow, the corresponding tiling strategy, and
the memory access patterns to optimize performance for retrieving
and processing on non-zeroes in the bit-tree. Our observation indi-
cates that the packing of non-zero elements in the bit-tree aligns
well with the state-of-the-art row-wise sparse matrix multiplication
dataflow [4, 13, 33, 42]. Additionally, while traversing bit-trees us-
ing our tiling strategy, we also reorganize the accessing of the rows
based on sparsity patterns, alleviating known irregular memory
access issues associated with the dataflow.

2.2.1 Row-wise Product Dataflow: In the literature, various
accelerators utilize different dataflows for sparse matrix multiplica-
tion. These dataflows are typically categorized based on the operand
that remains stationary and the sequence in which matrix dimen-
sions are traversed [17, 33]. Selecting an appropriate dataflow that
matches the storage format and tailoring an architecture accord-
ingly are critical factors in addressing inefficiencies and bottlenecks
in sparse matrix multiplication. Prior accelerators utilizing inner-
product and outer-product dataflows face inefficiencies with sparse
inner-join, irregular merging of large partial sum matrices, signifi-
cant on-chip memory requirements, and challenges related to load



imbalance [11, 29, 33]. These dataflows have limited parallelism
and are also not suitable for handling bit-trees.

Gustavson’s algorithm [13] enables row-wise product, an effi-
cient and highly parallel algorithm for sparse matrix multiplication
used by some state-of-the-art works [4, 33, 42]. Here, all the non-
zero elements from a single row of the stationary matrix (input 1)
are multiplied by the non-zero entries from the corresponding rows
of the streaming matrix (input 2). The row indices of the streaming
matrix are determined by the column positions of the non-zero
values from the stationary matrix, as shown in Figure 4(b). The
sparse vectors (partial sums) thus produced are accumulated in the
corresponding row of the output matrix.

While the adoption of row-wise product undeniably mitigates
many of the inefficiencies with prior dataflows, it still has a few
drawbacks. Notably, it has the issue of random and frequent irregu-
lar accesses to the streaming rows. Further, it exhibits inefficiencies
in the sparse vector addition process required to merge partial
sum rows. This necessitates the accelerators using Gustavson’s
dataflow to use high-radix mergers, reconfigurable interconnects,
and high-bandwidth memory resources [27, 33, 42].

The challenges posed by partial sum mergers and irregular
streaming become more pronounced as we transition from hyper-
sparse matrices to relatively denser matrices characterized by a
higher number of non-zero elements (nnz) per row. A greater nnz
per row implies increased irregular off-chip traffic associated with
the streaming matrix and a higher number of index comparison
operations for each partial sum row merge operation required to
generate the final output row. Recognizing these issues, we present
an algorithm that identifies sparsity patterns to reorganize and
group the execution order of stationary matrix rows, mitigating
the irregularity in accessing streaming matrix rows during infer-
ence. Moreover, we introduce a multi-pass zero-detection mech-
anism on bit-trees in hardware to effectively address partial sum
merging bottlenecks by circumventing explicit addressing through
low-overhead control logic.

2.2.2 Row Access Reorganization: The conventional method
for computing row-wise product faces a memory bottleneck when
fetching streaming rows [13, 33, 42]. This occurs because while
row-wise product reduces output partial sum traffic, it comes at the
cost of heightened traffic of the streaming matrix. During sparse
matrix multiplication, these streaming matrix rows are accessed
frequently and randomly depending on the positions of non-zero
elements in the stationary matrix, as depicted in Figure 4(b). For
instance, computing the highlighted output row in the figure ne-
cessitates accessing both the first and fifth rows in the streaming
matrix. Although these rows are retrieved on-chip, it’s uncertain
whether they will be utilized for the subsequent output row’s calcu-
lation, which is totally contingent upon the non-zero coordinates
of the next stationary row. Our objective here is to maximize the
reuse of these on-chip fetched rows, thereby decreasing off-chip
traffic and minimizing the likelihood of main memory access stalls
when a row is not present on-chip. To achieve this, we propose a
metric to evaluate streaming row traffic based on stationary rows’
characteristics. The execution order of stationary input rows is reor-
ganized according to their dissimilarity. Similar rows are processed
sequentially, improving data reuse and reducing off-chip traffic

for streaming rows. Importantly, this reorganization is informed
by a thorough analysis of the dataflow and does not require any
information about the streaming matrix.

The row-wise product dataflow enables parallelism at multiple
levels. Processing one stationary row independently produces one
output row, and we face no sequential interdependency between
the execution of different rows in the stationary matrix. This par-
allelism inherent in row-wise product yields the ability to process
rows out of order. We define a dissimilarity index between every
ordered pair of stationary matrix rows. Revisiting the dataflow,
dissimilarity, in this context, quantifies the additional streaming
rows that must be retrieved when consecutively processing station-
ary rows. Specifically, it is the number of positions in the second
row that lack a corresponding non-zero value in the first row. For
instance, in Figure 4(c), the dissimilarity between row 1 and row
2 is 1. This is because the streaming row required by row 2 isn’t
already fetched during the execution of row 1. The dissimilarity
index is defined for every pair of consecutively executing rows in a
matrix. Our approach employs this dissimilarity awareness at the
row level to efficiently execute stationary input matrix rows based
on memory-access patterns. During the processing of the 𝑛 + 1’th
row, streaming rows corresponding to these additional non-zeros
over the 𝑛’th row necessitate fetching from the main memory for
multiplication. The dissimilarity index for an entire matrix is thus
the sum of dissimilarities between each pair of consecutive rows.
We leverage this dissimilarity metric to establish an optimization
criterion for offline reorganizing and grouping of stationary rows.

Analogous to the principle of batching, where on-chip-fetched
weights are reused, reorganizing the execution of stationary matrix
optimizes the reuse of streaming rows already fetched. For each row
in the stationary input matrix, if there exists a hypothetical parent
row with no dissimilarities, the row is absorbed as a sub-pattern
of the parent pattern. This implies that processing a row after its
parent row wouldn’t necessitate extra off-chip access. For example,
in Figure 2(c), no additional access would be needed if row 2 is
executed after row n+1. Analyzing the rows results in a set of dis-
tinct patterns with dissimilarity indexes greater than zero, labeled
as p1, p2, p3... pn, as depicted in Figure 4. By leveraging insights
into global patterns in the matrix and considering the maximum
available streaming rows storage capacity on-chip, we can reorder
stationary row access to maximize data reuse. Parent patterns typi-
cally contain a higher number of non-zero elements, where most
of the latency in fetching streaming rows can be efficiently masked.
Subsequently, processing all sub-patterns of a parent pattern se-
quentially reduces redundant off-chip traffic significantly.

We then analyze the dissimilarity among the parent patterns
within the matrix. We group rows with lower dissimilarities into
balanced clusters for processing. For instance, if executing pat-
tern p2 after p1 requires two additional streaming row accesses,
while executing pattern p3 after p2 requires three extra accesses,
it’s logical to execute them in the sequence p1, p2, p3. Moreover,
if patterns pn and p1 exhibit high dissimilarity (indicating mini-
mal reuse), we segregate such patterns into separate groups. These
groups do not benefit from sequential processing and can be pro-
cessed in parallel. Hence, patterns with lower dissimilarities are
organized into balanced clusters, taking advantage of the row-wise
independence of the stationary side. This reorganized and grouped
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execution collectively diminishes random access to the streaming
matrix, consequently reducing unnecessary memory traffic.

2.3 Memory Access Optimizations
2.3.1 Output Workspace: Kjolstad et al. [21] introduced the no-
tion of a workspace as a temporary tensor, typically dense, allowing
for rapid insertion and random access in sparse matrix operations.
When integrated at an architectural level, this workspace in the
local memory is mapped to the main memory either as sparse or
dense tensors, with explicitly decoupled data orchestration [30]. A
dense output workspace enables efficient and only essential pro-
cessing over non-zeroes in the input matrix while requiring mini-
mal additional hardware for indexing into the workspace. In our
execution model, this indexing translates to output partial sum
redirection, which is already performed by the zero detection hard-
ware in conjunction with crossbars, helping us exploit data locality.
Further, upon analyzing the ML workloads, we find that, given the
moderate sparsities on the inputs, the average sparsity of output
matrices is merely 8.1%. Given our prior analysis of storage formats
for variably sparse matrices, it becomes evident that maintaining
a dense workspace for these matrices is preferable not only for
quick insertion and access but also from storage and on-chip traffic
standpoints. We further elaborate output workspaces through our
tiling strategy ahead.

Algorithm 1 Output-Stationary, Tiled Row-wise Product
1: Input:Matrix𝑀𝐾 , Matrix 𝐾𝑁
2: Output: Matrix 𝐶 ∈ R𝑀×𝑁
3: for all chunks in matrix 𝐶 do ⊲ Figure 6
4: 𝐶𝑐ℎ𝑢𝑛𝑘 ∈ R𝑀×𝑐
5: for all rows in matrix𝑀𝐾 do
6: 𝐶𝑟𝑜𝑤-𝑠𝑙𝑖𝑐𝑒 ← corresponding row in 𝐶𝑐ℎ𝑢𝑛𝑘
7: for all 𝑛𝑧𝑖 in𝑀𝐾 row do ⊲ Figure 4(b)
8: 𝑠𝑡𝑟𝑅𝑜𝑤 ← nnz in corresponding 𝐾𝑁 row slice
9: 𝑝𝑠𝑢𝑚𝑖 ← 𝑛𝑧𝑖 · 𝑠𝑡𝑟𝑅𝑜𝑤
10: end for
11: 𝐶𝑟𝑜𝑤-𝑠𝑙𝑖𝑐𝑒 ←

∑
𝑖 𝑝𝑠𝑢𝑚𝑖

12: end for
13: end for

2.3.2 Tiled Row-Wise Product on Bit-Trees: Through Figure 6
and Algorithm 1, we detail the data movement and tiling strategy
employed for the multiplication of a compressed𝑀 ×𝐾 (stationary)
matrix with a compressed 𝐾 ×𝑁 (streaming) matrix. The stationary
matrix is processed one row at a time, involving sequential access
to non-zero elements and parsing the associated bit-tree to decode
the relative position of the next non-zero. These positions are then
utilized to retrieve streaming rows and their respective bit-trees
for multiplication. The streaming matrix is partitioned into chunks

with c=16 columns, and rows within a chunk are called row-slices.
A chunk comprises M row-slices (line 4), and a slice encompasses
four l1 nodes or up to four l2 leaves of the bit-tree, corresponding
to 16 values in the original matrix. While processing all the row
slices of a streaming matrix chunk, the corresponding partial sum
(psum) slice of the output row remains stationary for accumulation,
forming the output workspace (line 11). Each processing element
that processes one output row has one output workspace register
file. Streaming slices (line 8) within a chunk are managed using a
scratchpad between successive executions of the stationary rows.
The row-access reorganization strategy explained earlier is applied
to the stationary matrix to maximize the reuse of streaming slices
within the scratchpad.

This tiling of the sparse matrix according to its actual dimensions
is data-agnostic and is known as coordinate space tiling [16]. When
adopting coordinate-space tiling, we face a challenge when fetch-
ing the bit-tree l1 of a completely zero slice, necessitating a flush
before resuming computation for the next row-slice. This could
result in stalls when handling large hyper-sparse matrices, as they
are unsuitable for efficient processing with two-level bit-trees and
require higher-order bit-trees. ZeD’s algorithm is generalizable and
scalable to such hyper-sparse matrices, only requiring multiplexing
of the samemicroarchitecture to support the higher-order bit-trees.

3 ZED ARCHITECTURE
We design ZeD based on the tiled row-wise product dataflow on
the bit-tree storage format introduced previously. ZeD is structured
in an output stationary format, focusing on stationary partial sum
accumulation, enabling parallelism at multiple levels of granularity.
The dataflow enables the computation of output rows independently
and concurrently. A Processing Element (PE) can individually com-
pute a single output row to exploit this parallelism. Given the nature
of the dataflow, each PE works independently and in parallel and
can start the execution of new rows asynchronously. Figure 7(a)
illustrates a high-level overview of our Architecture. Employing N
PEs in parallel enables the simultaneous computation of N rows
of the output matrix. Furthermore, within each PE, we exploit the
opportunity for parallelism during the scalar-vector multiplication
of non-zero elements from the stationary matrix with the non-zero
vectors formed by the streaming matrix rows. Given the ordered
nature (sorted by position) of streaming data within a row, this
operation can be carried out concurrently alongside zero-skipping
on bit-trees, with metadata management reserved solely for the
final merge operation that accumulates stationary partial sums.

Besides reducing storage overhead, the bit-tree enables an ef-
ficient multi-pass skipping mechanism. This multi-pass skipping
structure facilitates myopic (near-sighted) lookahead zero-detection
within each level, enabling efficient indexing into the subsequent
level at minimal hardware cost.

3.1 Processing Element
3.1.1 Zero Detection Unit: The Zero Detection Unit (ZDU) is the
key component for decoding a bit-tree. Given the ordered nature
of streaming data, the ZDU serves as a simple hardware extension
designed for on-the-fly decoding of each level of the bit-tree, which
synchronizes non-zero values to their actual position in the streams.



Multiplication
 Unit

Accumulator

 Zero-Detection 
Unit

Memory 
Controller

Bit-
Tree

Stationary 
Matrix Row NZ

Streaming Matrix 
Row NZs

Output Psum

4x2

8 32

(a)

Streaming Matrix 
Input Rows

Streaming NZs 
(partial sums)

Streaming 
L1 Bit-Tree 

NZD_L1

NZD_L1

NZD_L1

First 
Pass 

Streaming Rows

NZD_L2

NZD_L2

NZD_L2

Second 
Pass 

Streaming
L2 Bit-Tree

Streaming NZs 
(partial sums)

Leaf 
Accumulator

Leaf 
Accumulator

(ii) Zero-Detection Unit

(i) Multiplication Unit

Stationary NZᵢ

8

8

Second Pass

`
`

Reg
File

First Pass Second Pass

Leaf 
Accumulator

(iii) Accumulator & Control Logic

4 4

(b)

Figure 7: (a) Architectural Overview: datapath (black) & control flow (red) (b) Working of various components of a PE

We use "zero-detection" and "non-zero-detection" interchangeably
due to their analogous nature over a binary vector. The ZDU detects
the first ‘set’ bit in a leaf, returns its position, and masks, i.e. ‘unsets’
the bit (denoting ‘completed’) before moving to the next cycle. This
enables decoding the position of non-zero elements within a leaf
while skipping zero positions every cycle till the leaf has no non-
zero left. Given that the tiling strategy at l1 and the sizes of leafs
at l2 form packed bits of four, processing only four bits at a time
is sufficient, regardless of the level. Consequently, these ‘myopic’
units only necessitate bitwise operations on four bits every cycle
to identify non-zero positions. For example, if a leaf has three non-
zeros, the ZDU returns their positions in order over three cycles.

The ZDU is designed to meet the requirements of our multi-pass
skipping mechanism. Depending on the depth of the bit-tree vector
being parsed, the output of a zero-detection unit (corresponding to
the 𝑛’th pass, where 𝑛 is the level) is employed as a control signal
to manipulate the merge operation in the accumulator. We later see
that this myopic, bitwise non-zero detection hardware collectively
occupies less than 3% of the total on-chip area.

3.1.2 Multiplication Unit: Each PE has a multiplication unit
consisting of eight SIMD-style multipliers. The multipliers are ded-
icated to executing scalar multiplication of non-zero elements from
the stationary rowwith their respective streaming matrix rows. The
memory controller coordinates the arrangement of these streaming
matrix rows, corresponding to each stationary non-zero in the row-
wise dataflow elucidated earlier. This scheduling is synchronized
with the input bit-trees streamed to the Zero-Detection unit, which
produces accumulator control signals for each multiplier output.
The Multiplication unit produces partial sum row-slices streamed
to the accumulator for the partial sum accumulation.

3.1.3 Accumulators: Using bit-trees and zero-detection enables
a priori lookahead into the merging operations, which is one of
the known inefficiencies in the dataflow. As discussed earlier, we
maintain a dense workspace for accumulation in the output row.
The dense workspace is realized as a register file. Utilizing 4 ×

2 leaf accumulators (Figure 7(b)) enhances efficiency in mergers
within a row-slice. Each leaf accumulator retains a stationary leaf
(four elements) in its local register file. The first pass configures
the crossbar, directing the multiplier output to the appropriate leaf
accumulator. Subsequently, the second pass determines the precise
position within the designated leaf for accumulation. Given that
a leaf accumulator keeps four values stationary, the second pass
serves as a two-bit control signal to index into the specific register
among the four in the register file for accumulation.

3.1.4 Control Path: We first parse the top (l1) level of our stream-
ing bit-tree wherein the first pass output from the non-zero detec-
tion unit enumerates non-zero second-level leafs. Each zero-skipped
at l1 corresponds to four zeroes in l2. For a completely zero l1, the
corresponding datapath has to flush and restart computation for the
next row-slice. The first pass output is also used to determine the
configuration of the crossbar. This essentially determines the leaf to
which the value belongs and thus enables redirecting, i.e. mapping
each value to its designated leaf’s accumulator. Chunk values are
padded to the nearest four for memory alignment. Using the first
pass results we index into the second level of our bit-tree. Non-
zero-detection on the second level yields the second pass output
that indexes into local positions (between 0-3) of non-zero values
inside a leaf. For an adder within each stationary leaf accumulator
in Figure 7(b), the second pass acts as a control signal for register
selection between the leaf-width-sized local register file, i.e. index-
ing into the workspace. The second pass is a two-bit signal for
four-element leafs.

The leaf accumulators are decoupled from the multiplier output
using buffers. Each of these last-level accumulators functions with
no leaf inter-dependence, i.e., one leaf accumulator only accumu-
lates values in four locations in the dense space. Buffers enable
congestion mitigation by reassigning work to leafs that are free
after finishing the accumulation of their assigned row-slices of an
entire chunk. Leaf accumulators require synchronization only after
processing one chunk. Analysis of our architecture over various



Workload Name Dimensions Sparsity %
M, K, N MK KN

CNN R9 64, 576, 3136 50.93 55.98
Resnet50 R19 512, 128, 784 63.61 46.98
layers R29 256, 1024, 196 82.80 39.41

R39 256, 2304, 196 80.56 67.43
R49 2048, 512, 49 84.69 69.75

ViT DeiT-B 196, 196, 768 90.07 -
NLP BERT-B 384, 384, 768 79.52 -
Synthetic Syn1 1000, 300, 800 30.00 25.00
Synthetic Syn2 1000, 300, 800 40.00 85.00

Table 2: Workload Sparsities and Dimensions

sparse ML matrices shows that the buffers are small and incur low
overheads as the producer (multiplication unit) and consumer (accu-
mulators) have identical parallelism, and buffers primarily function
to mitigate leaf-level load imbalances.

This architecture is easily scalable to accommodate higher-level
bit-trees and/or varied sizes of leafs, requiring adjustments in the
tiling scheme, multiplexing the zero-detection hardware and/or
changing its width. Furthermore, the hardware cost remains mini-
mal as the zero-detection unit processes only small (myopic) and
deterministic lengths of bit-vectors at any level of the bit-tree, dis-
tinguishing bit-trees from naive bitmaps.

4 EXPERIMENTAL EVALUATION
4.1 Workloads
We analyze our architectural decisions, corresponding performance,
utilization, and ZeD memory traffic across a wide range of real-
world ML workloads. In order to showcase the effectiveness of our
approach and underscore the importance of segregating pruning
algorithms from the hardware they operate on, we examine vari-
ous machine learning models. We choose models that are pruned
using state-of-the-art unstructured pruning techniques, resulting
in less than 1% accuracy loss. These techniques are oblivious of the
hardware, rendering absolute freedom in pruning. We select the
ResNet50 model on the ImageNet-1K dataset pruned to an average
of 80% sparsity [12]. Given the variations in sparsity within a model,
we evaluate Resnet50 at two granularities: we look at its individ-
ual layers (R9, R19, up to R49) as well as the average performance
on the entire model (Resnet50). Like prior works, the convolution
operations in the CNN model are mapped as matrix multiplication
operations using a Toeplitz transform [6]. We consider the sparse-
dense score-value matrix multiplication for evaluating sparse at-
tention [24, 36]. To obtain the sparse scores, we use the pruned
BERT-Base model (language) from [12], evaluated on the SQuAD
dataset with a context length of 384 and the DeiT-Base model (vi-
sion) from [41] that is aggressively pruned to up to 90% sparsity.
Additionally, we introduce two synthetic workloads designed to
exhibit characteristics absent in these limited real-world models.
Syn1 simulates a relatively denser matrix multiplication scenario,
whereas Syn2 is meant to demonstrate the efficacy of our approach

in efficiently processing dense stationary and sparse streaming ma-
trices. The actual sparsity levels and the dimensions of the matrices
are shown in Table 2.

4.2 State-of-the-art Baselines:
We use three state-of-the-art accelerators for comparison, Dual
Side Sparse Tensor Core (DSTC) [38], Eyeriss [17], & Flexagon [27].
DSTC introduces zero skipping to the tensor-core architecture us-
ing a tiled bitmap format. It implements an outer-product matrix
multiplication on tensor cores of a GPU where the adapted bitmap
allows it to skip warps corresponding to entirely sparse tiles of
the output matrix. The sparse version (v2) of Eyeriss implements
an inner-product matrix multiplication. It stores weights and acti-
vations using a CSC format and implements a comparison-based
skipping to eliminate ineffectual accesses and computations on
weights corresponding to zeroes in activations. Flexagon intro-
duces a reconfigurable Network-on-Chip (NoC) that can support
multiple kinds of dataflow while using the CSR format for its ar-
chitecture. We choose the three architectures to cover the funda-
mental techniques utilized in contemporary sparse accelerators in
the literature. DSTC encompasses all the functionalities of sparsity-
supporting tensor-core variant architectures while employing a
low-cost bitmap format [38]. Eyeriss shows skipping through CSR
storage [17]. Meanwhile, Flexagon, through reconfigurability, in-
corporates characteristics from various hyper-sparse matrix accel-
erators and tailors them for deep learning tasks [27].

4.3 Evaluation Framework
We design ZeD in RTL, and synthesize it with a target frequency
of 500MHz using the Synopsys Design Compiler on a commercial
22nm technology node for area and power estimations. We use a
subset of evaluation inputs to determine an average activity level
for ZeD’s components and finally use a 15% higher activity level for
conservative power estimates. For further exploration and evalua-
tion of design-tradeoffs, we develop a cycle-accurate simulator for
ZeD. To better understand ZeD’s results, we also model ZeD-naive
without row-reorganization.We estimate the performance, memory
traffic, and utilization of various components of the architecture
using the cycle-accurate simulator. We use an eight-PE model of
ZeD with a total of 50KB on-chip SRAM to store the stationary
non-zeroes, streaming matrix rows, output partial sums, and cor-
responding bit-trees. The SRAM is paired with a 16GB/s off-chip
DRAM memory. We use CACTI 7.0 [5] to model these memories at
the same tech node.

We model the baseline architectures with the same theoreti-
cal peak performance (corresponding to 64 INT8 MAC units) and
then compare the achieved performance and efficiency. We use
Sparseloop [40] to model DSTC-like, Eyeriss-like, and representa-
tive dense tensor core-like baselines. Sparseloop also reports the
area and energy consumption of these architectures. We use the
STONNE [28] simulator and the numbers reported in the paper
for Flexagon’s performance, power, and area results. We model
the available configurations of Flexagon with a 64-unit wide multi-
plier network and scale up the performance for the other dataflow
configurations according to the original paper for a fair comparison.
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4.4 Experimental Results
We first evaluate the on-chip area and power consumption of ZeD.
As seen earlier, bit-trees require negligible storage space compared
to their pointer-based CSR counterparts. Figure 9 demonstrates
a breakdown of the total 0.235mm2 on-chip area of ZeD. The on-
chip SRAM, which stores the non-zeroes in the stationary row,
output workspace, bit-trees, and the streaming matrix rows, takes
up 62% of the on-chip area. The collective footprint of the non-
zero detection units in each PE (NZD) contributes to merely 3% of
the total area. Moreover, only 4.5% of the total 59mW of on-chip
power is consumed by the non-zero detection units, which shows
its outstanding performance with minimal overheads. This analysis
further validates that our approach of using a non-elaborate, highly
compressed format and introducing additional hardware on-chip
to detect and process the compressed values dynamically is more
efficient than storing the matrices in a comparatively elaborate
elaborate CSR format.

4.4.1 Performance Analysis: We next evaluate the performance
of ZeD with respect to the state-of-the-art accelerators on the work-
loads from Table 2. Compared to the dense baseline, ZeD achieves
a maximum speedup of 13.4x and a gmean speedup of 5.9x. Fig-
ure 8 compares the speedup various accelerators can achieve over
the dense baseline. DSTC uses multiple bitmaps and relies on a
costly global buffer for extensive partial sum aggregations associ-
ated with outer-product, which reduces scalability and can cause
significant slowdowns when dealing with moderately sparse inputs
that accumulate to very dense outputs. Owing to this inefficient
dataflow and inefficient bitmap access, ZeD constantly offers more
than 2x speedup and gmean 3.5x speedup over DSTC. Eyeriss em-
ploys costly comparisons to skip accessing and processing weights
corresponding to zero-valued activations. Further, the CSC format
that enables this skipping optimization proves to be quite costly,
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Figure 10: Application-wise Performance per Area of the
architectures, normalized to the dense baseline

leading to a higher on-chip resource requirement but achieving
only modest speedups for most of the workloads. Consequently,
ZeD sees a gmean 2.9x speedup on Eyeriss.

Flexagon’s reconfigurable NoCs enable it to statically reconfigure
its architecture’s data flow to align with specific sparsity patterns’
requirements, thereby demonstrating efficient handling of variable
sparsities. Sparse attention matrices like BERT and DeiT require
decoding and streaming in non-zeroes only from the first input
matrix. Despite high sparsity, these computations maintain regu-
larity as the second input matrix is dense, enabling strided access
and streamlined merging. In contrast to DSTC, Flexagon and ZeD
employ a similar execution model in this context. Still, overall, ZeD
attains gmean 1.2x speedup on Flexagon across such workloads.

To put Flexagon’s performance into perspective, we conduct an
iso-area performance comparison of the different accelerators for
our workloads. Flexagon consumes more than 3x the area of DSTC
and more than 2.2x the area of ZeD, as shown in Figure 8. The
reconfigurable interconnects help mitigate irregularity but come
at the cost of significantly higher area and power consumption,
as also noted in the original work [27]. Further, Flexagon’s use of
compressed-sparse rather than bit-sparse formats requires higher
on-chip memory and area requirements and unnecessary memory
traffic in an already memory-intensive task. The memory require-
ments are further accentuated given the redundancy required to sup-
port all kinds of dataflow on the architecture. ZeD achieves gmean
2.7x better performance per area across the evaluated workloads
on Flexagon, attributed to our low-cost algorithm-architecture co-
design that can handle matrices with variable sparsities efficiently.
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Overall, ZeD achieves gmean 3.2x better performance per area over
the three baselines for all the workloads in Figure 10. For a holistic
analysis, we also compare the Energy Delay Product (EDP) of ZeD
to Flexagon. Figure 11 highlights the significant EDP benefits of
ZeD over Flexagon across the wide range of input matrices.

Ablation Studies: To better understand the enhancements from
ZeD’s architecture and row-reorganization, we conduct ablation
studies to demonstrate these improvements separately. A naive ZeD
(ZeD-naive) model without reorganization shows a gmean 2.62×
improvement over the baselines, which can be solely attributed to
ZeD architecture. Further, introducing row-reorganization reduces
the proportion of memory access stalls from 34% to about 19%
of the overall execution time (40% reduction). This improvement
translates to an additional 1.25x performance increase (up to 1.7×)
over the ZeD-naive model. Combined, these result in the gmean
3.2× improvement in iso-area performance over the baselines.

Since row-reorganization can currently only be applied offline,
transformer matrices with dynamic sparsity, such as DeiT and
BERT, do not incorporate row-reorganization for fair final results.
However, recent research [41] indicates the potential for static spar-
sity in transformers, which, if incorporated, would enable ZeD to
achieve an additional 1.4× speedup in these evaluations. The bene-
fits of row-reorganization are particularly noticeable in matrices
like R29, R39, and R49, where the weights have higher sparsity,
causing significant dissimilarity and stalls in ZeD-naive.

4.4.2 Sensitivity to storage format parameters: ZeD’s archi-
tecture design is primarily influenced by the packing size of the
last-level leaf node and the width of the row slice. Figure 11 illus-
trates the impact of varying the row-slice width from 8 bits to 64
bits for four-element leafs. The utilization of ZeD compute elements
reaches its peak at a slice width of 16 bits, with a notable decrease
as we increase the slice width to 64 bits. Working with very small
row slices risks encountering a larger number of entirely zero slices
in the first pass on the bitree L1. This can lead to unnecessary stalls
when transitioning to the next row slice within a chunk of the ma-
trix without any computing. Conversely, larger row slices, implying
larger tiles, are more susceptible to load imbalance due to uneven
distribution of non-zero elements. This can result in congestion at
leaf accumulators, requiring large decoupling buffers or reduced

compute utilization. Furthermore, larger row slices diminish the ef-
fectiveness of the row reorganization strategy due to the increased
probability of dissimilarity between two rows.

By exploring the different packing strategies in a leaf, we find
that the average utilization of compute elements across these con-
figurations stays within 3% of the optimum. Nevertheless, packing
2-bits in a leaf entails more complex control and crossbar logic,
whereas 8-bit leaves demandmore complex zero-detection logic and
increased padding requirements. Our analysis suggests that a 16-bit
slice of 4 four-bit leaves achieves the highest efficiency. Caveat:
On processing a sparse matrix multiplication with hyper-sparse
scientific matrices using the same leaf sizes and tiling strategies,
ZeD suffers from low utilization. We see only 28% utilization for
one such test application, pointing to the need for scaling up to
higher-level bit-trees and/or larger tiles. As discussed earlier, the
scope of this work is variably sparse ML workloads with < 99%
sparsity. Pruning aims to trim redundant weights and activations in
ML models while preserving essential information, leading to mod-
erately sparse matrices compared to the inherently sparse scientific
matrices. However, it is worth highlighting that our algorithm and
architecture can easily adapt and generalize to handle hyper-sparse
matrices. This adaptability requires straightforward modifications
to packing levels and tiling in the software, along with adding more
parallel hardware units for zero detection.
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4.4.3 Effect of row reorganization: The proposed matrix row
reorganization and regrouping in ZeD significantly reduces off-chip
memory traffic. Identifying sparsity patterns facilitates effective
data reuse for each byte of streaming matrix data retrieved on-chip,
leading directly to decreased energy consumption associated with
main memory access. The average pre-processing time for row ac-
cess configurations on a matrix in our workloads is approximately
0.7 seconds, a cost easily amortized across multiple inferences utiliz-
ing the same weight matrices. Figure 12 shows the relative memory
traffic of ZeD in comparison to a naive CSR implementation of row-
wise product matrix multiplication on Resnet50 layers with varying
sparsities. Naive bit-tree denotes a version of ZeD with no memory
access optimizations. When dealing with layers that do not entirely
fit within the PE scratchpads, exploiting the absence of sequential
interdependencies in output row computations and reorganizing
stationary row executions result in a substantial 2.8x reduction in
memory traffic over a naive implementation. By grouping (and sep-
arating) patterns based on dissimilarity scores and executing them



on different PEs while ensuring local data reuse, an additional 1.2x
reduction in memory traffic is attained. Consequently, we achieve
a total 3.4x reduction in memory traffic overheads compared to a
naive model of ZeD.

5 RELATEDWORKS
Storage Formats: We categorize prior research according to their
use of various sparse storage formats. There has been lots of indus-
try adoption [26] and research [23, 39] on utilizing structured sparse
formats, particularly in ML. As discussed earlier, these formats
enable regular processing but expose the accuracy-compression
tradeoff due to hardware-enforced limitations.

In recent literature, the CSR format and its modified versions
have emerged as the most prevalent sparse storage formats [4,
10, 18, 31–33, 42] for unstructured sparse matrices. These formats
and associated accelerators are typically tailored for hyper-sparse
computations in high-performance and scientific computing do-
mains, often implemented on distributed scale-out systems. While
these coordinate-pointer-based formats efficiently store and index
matrices within scientific computing, our prior analysis reveals
their inefficiency when evaluated with moderately sparse work-
loads. Some works like Flexagon [27], EIE [15], and Eyeriss [17]
have adopted these formats for handling sparse ML workloads. Our
comparison and analysis of these works in the previous section
reveal that while the utilization of CSR-like formats, coupled with
architectural enhancements, can yield satisfactory performance,
it comes at the expense of increased on-chip resource utilization
due to higher storage requirements and associated traffic. Addi-
tionally, these formats exacerbate the memory bottleneck, which is
particularly bad for tasks like Sparse Matrix Multiplication, which
is already bandwidth-bound.

While less prevalent, some bitmap-based storage formats have
also been adopted previously, particularly in response to the inef-
ficiencies observed in the CSR format [11, 31, 38]. Although these
approaches are efficient in terms of storage, they often lack a mature
indexing strategy and encounter limitations of the bitmap when in-
dexing longer run-length of zeroes in sparse operands, necessitating
expensive comparisons to eliminate ineffective compute.

ExTensor [16], DSTC [38], and SMASH [19] employ hierarchical
storage techniques to facilitate skipping at coarser granularities.
ExTensor uses a tiled CSR format to hierarchically intersect and
eliminate all zero dimensions of computations across tensor tiles.
DSTC and SMASH utilize hierarchical bitmaps for this elimination.
SMASH incorporates hardware-accelerated explicit indexing into
non-zero blocks using a bitmap management unit that exposes itself
to the sparse application in software as an ISA extension. DSTC
facilitates hierarchical bitmap-based operations while utilizing an
outer-product matrix multiplication approach to skip entirely zero
output tiles. While skipping at a coarser granularity proves effective
for hyper-sparse matrices, it introduces inefficiencies for denser
matrices, where they are forced to store and compute on a lot of
zeroes with a higher likelihood of encountering non-zeros in each
tile. Moreover, these approaches often depend on using explicit
comparisons for intersections or costly output accumulations, fail-
ing to fully leverage their storage capabilities with an efficient
dataflow and architecture. Fibertree [34] introduces a hierarchical

storage abstraction for sparse matrices, allowing partitioning and
processing of matrices at multiple granularities. This abstraction
offers flexibility and expressibility for working with sparse tensors.
Fibertrees can be realized in hardware using various sparse storage
techniques, including CSR and even bit-trees.

Our proposed algorithm and architecture can seamlessly inte-
grate at the lowest level within the hierarchy of these abstractions.
This demonstrates ZeD’s adaptability and generalized capability,
showing its potential to enhance existing coarse-grained skipping
techniques for various sparse matrix acceleration architectures.

Sparse Dataflows: Sparse accelerators can be broadly classified
based on the dataflows they employ: Eyeriss [17] and SIGMA [31]
utilize a naive inner product approach to compare and eliminate
ineffective computations. SpArch [43] and OuterSPACE [29] accel-
erate SpMM using an outer-product dataflow similar to DSTC. They
face challenges due to the high output partial sum merging cost.
MatRaptor [33], InnerSP [4], and GAMMA [42] employ different
storage, preprocessing techniques and merging hardware for their
row-wise product dataflow implementations. Flexagon resorts to
reconfigurability to efficiently support the three major dataflows
mentioned here. The evaluation against Flexagon, DSTC, and Eye-
riss thus encapsulates the major contributions of the other works
and provides a comprehensive understanding of ZeD.

6 CONCLUSION
We present ZeD, with generalized architecture design considera-
tions to tackle variable, unstructured, and random sparsity in ML
models. We highlight the inefficiencies of contemporary sparse
accelerators in handling matrices with variable degrees of spar-
sity. We exploit sparsity by efficient packing, storage, retrieval, and
consequent traversal of highly compressed bit-tree structures and
sparsity-pattern-based memory accesses. Our techniques combin-
ing a row-wise product dataflow with a bit-tree compression format
and zero detection hardware enable parallelism at multiple gran-
ularities. The algorithmic and architectural enhancements enable
efficient processing of matrices across a wide spectrum of sparsities
commonly seen in ML workloads.
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